
1

Developing Extensions
With Security in Mind

Tutorial

Henning Pingel
<henning@typo3.org>

T3CON08, Berlin
October 09, 2008

(Last update of slides: October 16, 2008)

mailto:henning@typo3.org

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON082

Welcome!

Have a great time
at T3CON08!

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON083

Overview

 Intro (15 mins)
 Dangers of URI Tampering (30 mins)
 Demystifying HTTP Requests (45 mins)
 Coffee Break (30 mins)
 Unsanitized User Input (45 mins)
 Security Issue Handling (15 mins)
 Discussion (30 mins)

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON084

Why a tutorial?

● Four times more time than in a talk
● More time for questions and discussion

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON085

Who am I and who are you?

● This tutorial is officially targeted at extension
developers.

● How many extensions have you written?
● How many vulnerability types do you know and

understand?
– 1 to 4
– 5 to 10

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON086

The TYPO3 Security Team

● On T3DD08 in
Elmshorn
(incomplete)

● Often happy
about secure
software, but
sometimes...

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON087

. . .unhappy about insecure extensions

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON088

Security Bulletins in 2008 (so far)

 TYPO3-20080924-2, TYPO3-20080924-1,
TYPO3-20080919-1, TYPO3-20080916-1,
TYPO3-20080701-4, TYPO3-20080701-3,
TYPO3-20080701-2, TYPO3-20080701-1,
TYPO3-20080619-1, TYPO3-20080611-1,
TYPO3-20080527-2, TYPO3-20080527-1,
TYPO3-20080515-2, TYPO3-20080515-1,
TYPO3-20080513-4, TYPO3-20080513-3,
TYPO3-20080513-2, TYPO3-20080513-1,
TYPO3-20080505-2, TYPO3-20080505-1,
TYPO3-20080416-2, TYPO3-20080416-1

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON089

Dangers of URI Tampering

● There are infinite possibilities to fill the URI bar of
the web browser.

● “Try everything you want and see what happens.”

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0810

Information Disclosure

● through certain files of content-type
– text/plain or
– text/html

● through PHP script files
– directly executable PHP includes or
– forgotten debug scripts

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0811

TYPO3 Extensions.. .

● ... often consist of a large number of files.
● Those files can contain different “flavours” of

information.
● Not all files within an extension are addressed at the

same group of people.
● Metaphorically speaking, an extension can be a box

of...

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0812

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0813

Target Groups of Files in
Extensions

● Images, CSS and HTML-Templates are there to be
served to the frontend, to the whole world.

● Some images may only be there to be displayed in a
backend module.

● SXW-Files, readme files, trace files are addresses to
the administrator.

● Artefacts: files uploaded by accident (*.bak files,
project files, subversion files)

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0814

Possible Impact
● All extension's files are accessible via HTTP on a

TYPO3 default installation. (.htaccess protection is
beyond the scope of this tutorial.)

● File structure is publicly available on Extension
Repository (TER). But this is not the problem!

● Impact: Information Disclosure may be possible
through Forced browsing and File location
guessing.

● Is there a real life metaphor for these terms?

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0815

The Fresh Milk Metaphor

How to get the milk with the
best best-before date...

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0816

Harmless Example

tt_news Changelog File: A piece of information...
● ...that is available from any T3 site using tt_news

(via Forced browsing)
● ...that is of no interest for the ordinary visitor of a

web site.
● ...that contains information about which version of

an extension is used.

http://localhost/go/dummy-4.2.2/typo3conf/ext/tt_news/ChangeLog

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0817

Example for Information
Disclosure

Extension w4x_backup [Demo]
● Bulletin was published in June 2007
● Version 0.9.1 and below are vulnerable
● Version 0.9.2 contains security fixes
● Details: Bulletin TYPO3-20070612-1
● Impact: In worst case, download of backup archive

(containing db and file backup)
● Log file (with static filename and path) contains file

name of backup archive

I use this real life
example with the
kind permission of
the extension's
author. Thank you!

http://localhost/go/dummy-4.2.2/typo3/index.php
http://typo3.org/teams/security/security-bulletins/typo3-20070612-1/

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0818

Best Practice

If your extension really needs to generate a file to
store data (like traces, logs, configuration

settings), avoid Information Disclosure by avoiding
content-types text/plain or text/html.

Put it into a dynamically generated PHP script with
a .php file extension and also avoid guessable file

names.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0819

Directly Executable PHP Scripts
and Includes

● Visible PHP/MySQL error messages
● Are TYPO3's mechanisms of authentication, user

privilege checks and permission checks respected
before their code get's executed?

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0820

Example

● Extension ftpbrowser (similar to quixplorer)
● Bulletin was released in July 2007
● Version 0.1.2 and below are vulnerable
● Version 0.1.3 contains security fixes
● Bulletin TYPO3-20070709-1
● Impact: Incorrect Authentication allows file upload if

register_globals is activated in php.ini.
● You may analyse the code yourself in DIY phase.

I use this real life
example with the
kind permission of

the extension's
author. Thank you!

http://typo3.org/teams/security/security-bulletins/typo3-20070709-1/

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0821

How to prevent script execution
outside of TYPO3 context?

● Best case: All PHP code is wrapped in a class, class is
not instantiated in file, nothing can happen.

● die() if some elemental TYPO3 constant doesn't
exist (Example, or search TYPO3 core code for more
examples)

● Backend modules:
$BE_USER->modAccess($MCONF,1);

http://typo3.org/extensions/repository/view/ftpbrowser/current/info/mod1/ftpbrowser-2.0/lib/ftplib_actions.php/

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0822

Embedding 3 rd Party Tools in
TYPO3 Extensions

● Everything already said also applies to 3rd party
tools.

● Additional problems:
– Different authentication concepts (Example: Folder based

authentication contra file based authentication.
– Different architecture: Direct access to Superglobals
– Different user types / session management
– Keep up with upstream security announcements

● Example cases: phpmailer, mysqldumper,
phpmyadmin

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0823

URI-Tampering: A Small Dilemma?

● TYPO3 V4 Extension architecture is “like it is”, but it
is the same situation for many currently popular web
application.

● An extension developer can still prevent all
vulnerabilities through careful design.

● Site administrators may put rules into a .htaccess file
that prevent access to files via HTTP.

● FLOW3 / TYPO3 V5 have a different architecture.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0824

Questions?

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0825

Demystifying HTTP Requests

How important is knowledge about HTTP?

Every web server is a HTTP server...

Understanding HTTP basics as the key to web
application security

Demystifying HTTP means demystifying the
web browser

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0826

Experienced web
developer Evil hacker

? ?

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0827

? ?PHP

SQL Injection
techniques

XSS
techniques

HTML/CSS

TYPOSCRIPT

Backdoor
installation

AJAX

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0828

HTTPHTTP PHP

SQL Injection
techniques

XSS
techniques

HTML/CSS

TYPOSCRIPT

Backdoor
installation

AJAX

HTTPHTTP

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0829

The Christmas Wish-list Metaphor

Christmas Wish-list

North pole

A nice pressy

No letter without an
answer!

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0830

HTTP RequestHTTP Request

Web serverWeb serverUser-AgentUser-Agent

HTTP ResponseHTTP Response

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0831

Talking to a Web Server

● Common HTTP request types
– GET
– POST

● Differences between GET and POST?

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0832

A Short (but valid) GET Request

GET /go/dummy4.2.2/ HTTP/1.1
Host: localhost

Contains information:
● Request type (GET)
● Absolute path of URI (/go/dummy-4.2.2/)
● Protocol version (HTTP/1.1)
● Network location (Host: localhost)

Important: End of request header is marked by double CRLF ().

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0833

The Most Basic POST Request
POST /go/dummy4.2.2/index.php?id=1&no_cache=1 HTTP/1.1
Host: localhost
ContentType: application/xwwwformurlencoded
ContentLength: 70

user=henning&pass=ddd&submit=Login&logintype=login&pid=2
&redirect_url=

Content-Length must exactly match the postvar
string length.

Alternative Content-Type „multipart/formdata“
is being ignored here.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0834

Further Common Request Fields

UserAgent: Mozilla/5.0 (X11; U; Linux i686; de;
rv:1.9.0.3) Gecko/2008092510 Ubuntu/8.04 (hardy)
Firefox/3.0.3
Referer: http://localhost/go/dummy4.2.2/index.php?
id=1&no_cache=1
Cookie: fe_typo_user=4c29c2fc83285e658569921fa91cf46e;
be_typo_user=e83066ebd9a71f2f13e0c17990d3cc2e;
PHPSESSID=cb689e18617bdc9ec5cbd77dd8992451

● User-Agent
● Referer
● Cookie

Caution: These values can
be freely defined by the
“instance” that creates
the HTTP request.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0835

HTTP Tools for Firefox

● Extensions for monitoring requests
– FireBug (output looks nice, but is often not complete)
– LiveHTTPHeaders (output looks not very nice, but Is

reliable)
● For other browsers:

– MSIE: HTTPWatch
– Safari/Webkit: Built-in Web Inspector

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0836

Hand Crafting a HTTP Request
Using Ancient Technologies

● Why using telnet?
– Easy way to communicate via TCP
– Available on every platform
– Plain text usage
– Can't get any simpler

● Alternative on Windows: PuTTy

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0837

Examples

Demo

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0838

DIY Phase

● The USB stick data contains a PDF with short
instructions.

● Alternatives:
– Analyse the source code of extension ftpbrowser

● Learn about register_globals if you are not familiar
● Find the PHP include script which contains the security holes

– Craft HTTP requests yourself using telnet (or PuTTY)
● Task 1: Install LiveHTTPHeaders and use it to copy request data.
● Task 2: Create a simple valid GET request (no “Bad request”

response)
● Task 3: Create a simple valid POST request

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0839

On Windows: Use PuTTy

● Putty.exe is on the USB stick, just start it

● Download: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0840

Grab a Coffee!

We will continue with the tutorial at 11:45.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0841

What Did We Learn?

● HTTP server has no way to enforce specific user
agent.

● No way to hide sensitive data by GET or POST
(besides HTTPS).

● There is no intimacy between the web browser and
the web server. Nothing we can't to ourselves.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0842

Impact of Unsanitized
User Input

What is user input?

Now we know:

Nearly the complete HTTP request

can be seen as user input

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0843

PHP Superglobals

● $_GET
● $_POST
● $_REQUEST (configurable mixture)
● $_FILE
● $_COOKIE
● $_SERVER

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0844

The Evolution of
Superglobals

Extension
t3lib_div::_POST() t3lib_div::_GET() t3lib_div::GP()

PHP $_POST $_GET $_REQUEST $_SERVER

tslib_pibase::piVars (selection with prefix)
t3lib_div::getIndpEnv()

TYPO3 Core

All values on t3-level are unescaped! No matter
how the PHP setting magic_quotes is

configured.

We have to validate and escape them.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0845

Methods of Validation
● Cut out line breaks (where not acceptable)
● String length checks (too long?)
● Type checks (intval())
● Regex based checks
● htmlspecialchars()
● mysqlrealescapestring() / fullQuoteStr()
● Checks agains lists (whitelist/blacklist)
● Check array's for unexpected cuckoo's eggs (values +

Keys - in case of dynamic key generation)

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0846

Sanitization
on TYPOSCRIPT Level

● Sanitization of user supplied content
– when rendered into HTML page via getText
– when used in SQL queries using CONTENT object

● stdWrap offers
– htmlSpecialChars
– intval
– removeBadHTML

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0847

Vulnerability Types

...that are created by unsanitized user input

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0848

SQL Injections

● Prerequisite: Unsanitized user input is used inside of
an SQL query string

● Sanitization methods:
– mysqlrealescapestring() for strings
– Intval() for integer values (commonly id's)
– If possible, check if integer value is in an invalid range

(for example negative integer values)

● Impact: “Single line catastrophe”

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0849

Code Execution /
Remote or Local File Execution

● Prerequisite: Unsanitized user input is used
– inside of an exec() or an eval() statement or similar.
– Inside of an include() or require() statement.

● Sanitization methods:
– Don't do this: I can't imagine a situation where this has

to be done.
– White lists of allowed commands

● Impact: “Single line catastrophe”

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0850

Path Traversal (“. ./ . ./ . ./”)

● Prerequisite: Unsanitized user input is used to create
the path to a file in the file system.

● Sanitization methods: Check path.
● Impact: Access to arbitrary files and file content

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0851

Cross Site Scripting (XSS)

● Prerequisite: Unsanitized user input is inserted into
the HTML page

● Sanitization methods:
– htmlspecialchars()
– RemoveXSS (introduced to core with TYPO3 4.2)
– BBCode
– If possible, check if integer value is in an invalid range

(for example negative integer values)

● Impact: Cookie theft / Session hijacking possible,
other dangerous stuff

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0852

Open Redirects

● Prerequisite: Unsanitized user input of type “URI” is
used inside of a generated HTTP response header.

● Example: header('Location: ' . $uri);
or a similar way of redirection (meta tag)

● Sanitization methods:
– Check URI against user definable white list

● Impact: Inexperienced user can be “hijacked” to a
different web site.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0853

CRLF Injection

● Prerequisite: Unsanitized user input is used to
generate a dynamic HTTP response header.

● Sanitization methods:
– Check values against user definable white list
– Prevent double Linefeeds (Newer PHP versions do that

already in function header())

● Impact: Various. Forcing user actions that the user is
not aware of.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0854

Check Reliabil ity of Sanitization
Methods by Tests

How? Let's discuss.

Visit the tutorial of Oliver Klee

to learn more about unit testing.

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0855

Security Incident Handling

● Contact us: security@typo3.org
● Case 1: You have found an issue in your own

extension.
● Case 2: You have found an issue in somebody elses

extension.
● TYPO3 Security Team policy

Developing extensions with security in mind
Henning Pingel, October 09, 2008, T3CON0856

Thank You!

