
Inspiring people to
share

Transparent Object
Persistence

(with FLOW3)
Karsten Dambekalns <karsten@typo3.org>

Inspiring people to
share

Old school persistence

DDD persistence

FLOW3 persistence

Inspiring people to
share

An example to use...
Let’s use a Blog

A Blog projects has

• a Blog

• some Posts,

• Comments and

• Tags

Easy enough, eh?

Inspiring people to
share

Setting the stage
A blog is requested

We want to show posts

We have data somewhere

We use MVC and have a view waiting

We only need to hand over the posts

Blog tables^Wrelations

uid name
1 FLOW3

uid blog_id title author text date
1 1 FLOW3 R. Lemke M!s esam vissforš"kie, t"p!c ka... 2008-10-07

uid name
1 PHP

2 DDD

3 FLOW3

uid post_id author text
1 1 Kasper Skårhøj Nice writeup, but...

blogs

posts

comments

tags

post_id tag_id
1 1

1 3

posts_tags

Inspiring people to
share

$row = mysql_fetch_assoc(
 mysql_query('SELECT uid FROM blogs WHERE name = \'' .

mysql_real_escape_string($blog) .
'\'')

);
$blogId = $row['uid'];

$posts = array();
$res = mysql_query('SELECT * FROM posts WHERE blog_id = ' . $blogId);

while (($row = mysql_fetch_assoc($res)) !== FALSE) {
 $posts[] = $row;
}

$view->setPosts($posts);

Straight DB usage

Inspiring people to
share

$row = mysql_fetch_assoc(
 mysql_query('SELECT uid FROM blogs WHERE name = \'' .

mysql_real_escape_string($blog) .
'\'')

);
$blogId = $row['uid'];

$posts = array();
$res = mysql_query('SELECT * FROM posts WHERE blog_id = ' . $blogId);

while (($row = mysql_fetch_assoc($res)) !== FALSE) {
 $posts[] = $row;
}

$view->setPosts($posts);

Straight DB usage

•SQL injection!
•clumsy code
•other RDBMS
•field changes?

Inspiring people to
share

$rows = $GLOBALS['TYPO3_DB']->exec_SELECTgetRows('uid', 'blogs', 'name = ' .
$GLOBALS['TYPO3_DB']->fullQuoteStr($blog, 'blogs'));

$blogId = $rows[0]['uid'];

$posts = $GLOBALS['TYPO3_DB']->exec_SELECTgetRows('*', 'posts', 'blog_id = ' .
$blogId);

$view->setPosts($posts);

DBAL in TYPO3v4

Inspiring people to
share

$rows = $GLOBALS['TYPO3_DB']->exec_SELECTgetRows('uid', 'blogs', 'name = ' .
$GLOBALS['TYPO3_DB']->fullQuoteStr($blog, 'blogs'));

$blogId = $rows[0]['uid'];

$posts = $GLOBALS['TYPO3_DB']->exec_SELECTgetRows('*', 'posts', 'blog_id = ' .
$blogId);

$view->setPosts($posts);

DBAL in TYPO3v4

•SQL injection!
•still clumsy...
•field changes?

Inspiring people to
share

ORM tools
ORM means Object-Relational Mapping

Objects represent a database row

Most tools are rather ROM – still focus on relational thinking

Implementations differ

• ORM base classes need to be extended

• Schema is used to generate code

Inspiring people to
share

Active Record
$blog = new Blog($blog);

$posts = $blog->getPosts();

$view->setPosts($posts);
•very nice
•dependency on
ORM tool?
•save()/delete()

Inspiring people to
share

Active Record
$blog = new Blog($blog);

$posts = $blog->getPosts();

$view->setPosts($posts);
•very nice
•dependency on
ORM tool?
•save()/delete()

$post->save();

$post->delete();

Inspiring people to
share

“DDD persistence”
Domain Models encapsulate behavior and data

Concerned about the problem – only

Infrastructure is of no relevance

Inspiring people to
share

Entities
Identity is important

Are not defined by their attributes

Examples could be...

• People

• Blog posts

Inspiring people to
share

Value objects
Have no indentity

Their value is of importance

Are interchangeable

Examples could be...

• Colors

• Numbers

• Tags in a blog

Inspiring people to
share

Aggregates
Cluster associated objects

Have a boundary and a root

The root is a specific entity

References from outside point to the root

Inspiring people to
share

Repositories
Provide access to aggregates and entities

Allow to find a starting point for traversal

Persistent objects can be searched for

Queries can be built in various ways

Handle storage of additions and updates

Inspiring people to
share

A Domain Model
Blog

Repository

Blog

Tag

Post

Comment

Inspiring people to
share

A Domain Model
Blog

Repository

Blog

Tag

Post

Comment

Re
po
si
t

Inspiring people to
share

A Domain Model
Blog

Repository

Blog

Tag

Post

Comment

Re
po
si
t

Inspiring people to
share

A Domain Model
Blog

Repository

Blog

Tag

Post

Comment

Re
po
si
t

Inspiring people to
share

A Domain Model
Blog

Repository

Blog

Tag

Post

Comment

Re
po
si
t

Aggre!
gates

Inspiring people to
share

A Domain Model

Tag

Post

Comment

Inspiring people to
share

A Domain Model

Tag

Post

Comment

En
ti
ty

Entity

Inspiring people to
share

A Domain Model

Tag

Post

Comment

En
ti
ty

Entity

Value

Inspiring people to
share

Implementing this...

must be a lot of work!

Inspiring people to
share

Using FLOW3?

Inspiring people to
share

Using FLOW3?

Inspiring people to
share

Using FLOW3...
You just implement the model

No need to care about persisting your model

FLOW3 handles this for you – transparently

Even a Repository only needs little work

Define relevant metadata in the source file

Inspiring people to
share

class Blog {

 /**
 * @var string
 */
 protected $name;

 /**
 * @var array
 * @reference
 */
 protected $posts = array();

 /**
 * Constructs this blog
 *
 * @param string $name Name of this blog
 * @return
 */
 public function __construct($name) {
 $this->name = $name;
 }

The Blog class

Inspiring people to
share

 /**
 * Adds a post to this blog
 *
 * @param F3::Blog::Domain::Post $post
 * @return void
 * @author Karsten Dambekalns <karsten@typo3.org>
 */
 public function addPost(F3::Blog::Domain::Post $post) {
 $this->posts[] = $post;
 }

 /**
 * Returns all posts in this blog
 *
 * @return array of F3::Blog::Domain::Post
 * @author Karsten Dambekalns <karsten@typo3.org>
 */
 public function getPosts() {
 return $this->posts;
 }

The Blog class

Inspiring people to
share

 /**
 * Returns the latest $count posts from the blog
 *
 * @param integer $count
 * @return array of F3::Blog::Domain::Post
 * @author Karsten Dambekalns <karsten@typo3.org>
 */
 public function getLatestPosts($count = 5) {
 return array_slice($this->posts, -$count, $count, TRUE);
 }

 /**
 * Returns posts posts by tag
 *
 * @param string $tag
 * @return array of F3::Blog::Domain::Post
 * @author Bastian Waidelich <bastian@typo3.org>
 */
 public function findPostsByTag($tag) {
 ...

The Blog class

Inspiring people to
share

class Post {

 /**
 * @var string UUID
 * @identifier
 */
 protected $identifier;

 /**
 * @var string
 */
 protected $title;

 /**
 * @var array
 * @reference
 */
 protected $tags = array();

The Post class

Inspiring people to
share

 /**
 * Constructs this post
 *
 * @author Robert Lemke <robert@typo3.org>
 * @author Bastian Waidelich <bastian@typo3.org>
 */
 public function __construct() {
 $this->date = new DateTime();
 $this->identifier = F3::FLOW3::Utility::Algorithms::generateUUID();
 }

 /**
 * Adds a comment to this post
 *
 * @param F3::Blog::Domain::Comment $comment
 * @return void
 * @author Robert Lemke <robert@typo3.org>
 */
 public function addComment(F3::Blog::Domain::Comment $comment) {
 $this->comments[] = $comment;
 }

The Post class

Inspiring people to
share

class Comment {

 /**
 * @var string
 */
 protected $author;

 /**
 * @var string
 */
 protected $content;

 /**
 * Constructs this comment
 *
 * @author Karsten Dambekalns <karsten@typo3.org>
 */
 public function __construct() {
 $this->date = new DateTime();
 }

The Comment class

Inspiring people to
share

class Tag {

 /**
 * @var string
 */
 protected $name;

 /**
 * Setter for name
 *
 * @param string $name
 * @return void
 * @author Karsten Dambekalns <karsten@typo3.org>
 */
 public function setName($name) {
 $this->name = $name;
 }

}

The Tag class

Inspiring people to
share

The BlogRepository
Now this really must be a complex piece of code, no?

One word: No

Inspiring people to
share

The BlogRepository
Now this really must be a complex piece of code, no?

One word: No

class BlogRepository extends F3::FLOW3::Persistence::Repository {

 /**
 * Returns one or more Blogs with a matching name if found.
 *
 * @param string $name The name to match against
 * @return array
 */
 public function findByName($name) {
 $query = $this->createQuery();
 $blogs = $query->matching($query->equals('name', $name))->execute();

 return $blogs;
 }
}

Inspiring people to
share

The BlogRepository
Now this really must be a complex piece of code, no?

One word: No

class BlogRepository extends F3::FLOW3::Persistence::Repository {

 /**
 * Returns one or more Blogs with a matching name if found.
 *
 * @param string $name The name to match against
 * @return array
 */
 public function findByName($name) {
 $query = $this->createQuery();
 $blogs = $query->matching($query->equals('name', $name))->execute();

 return $blogs;
 }
}

Inspiring people to
share

@nnotations used
@repository

@entity

@valueobject

@var

@transient

@reference

@identifier

Inspiring people to
share

Persistence Manager
Mostly invisible to developers

Manages additions of and updates to objects

Concerned only about objects in repositories

Collects objects and hands over to backend

Allows for objects being persisted at any time

Automatically called to persist at end of script run

Inspiring people to
share

Simplified stack

SQLite PgSQL MySQL ...

TYPO3 Content Repository

PDO ...

FLOW3 Persistence

Application Application

Inspiring people to
share

Simplified stack

TYPO3 Content Repository

FLOW3 Persistence

Inspiring people to
share

Transparent persistence
Explicit support for Domain-Driven Design

Class Schemata are defined by the Domain Model class

• No need to write an XML or YAML schema definition

• No need to define the database model and object model
multiple times at different places

Automatic persistence in the JSR-283 based Content Repository

Legacy data sources can be mounted

Inspiring people to
share

JSR-283 Repository
Defines a uniform API for accessing content repositories

A Content Repository

• is a kind of object database for storage, search and retrieval
of hierarchical data

• provides methods for versioning, transactions and
monitoring

TYPO3CR is the first working port of JSR-170 / JSR-283

Karsten Dambekalns is member of the JSR-283 expert group

Inspiring people to
share

Legacy databases
Often you...

• still need to access some existing RDBMS

• need to put data somewhere for other systems to access

The Content Repository will allow “mounting” of RDBMS tables

Through this you can use the same persistence flow

Inspiring people to
share

Legacy databases
Often you...

• still need to access some existing RDBMS

• need to put data somewhere for other systems to access

The Content Repository will allow “mounting” of RDBMS tables

Through this you can use the same persistence flow

future
fun!

Inspiring people to
share

Query Factory
Creates a query for you

Decouples persistence layer from backend

Must be implemented by backend

API with one method:

• public function create($className);

Inspiring people to
share

Query objects
Represent a query for an object type

Allow criteria to be attached

Must be implemented by backend

Simple API

• execute()

• matching()

• equals(), lessThan(), ...

• ...

Inspiring people to
share

Client code ignores
Repository

implementation;
Developers do not!

Eric Evans

Inspiring people to
share

Usability
Repositories extending FLOW3’s base Repository

• have basic methods already

• only need to implement custom find methods

• already have a query object set up for “their” class

No tables, no schema, no XML, no hassle

No save calls, no fiddling with hierarchies

Ready-to-use objects returned

Inspiring people to
share

Questions!

Inspiring people to
share

Domain-Driven Design
Eric Evans, Addison-Wesley

Literature

Applying Domain-Driven Design and Patterns
Jimmy Nilsson, Addison-Wesley

Patterns of Enterprise Application Architecture
Martin Fowler, Addison-Wesley

Inspiring people to
share

Links
FLOW3
http://flow3.typo3.org/

TYPO3CR
http://forge.typo3.org/projects/show/package-typo3cr

JSR-283
http://jcp.org/en/jsr/detail?id=283

Inspiring people to
share

Flickr photo credits:
megapixel13 (barcode), rmrayner (ring), Ducatirider (grapes), Here’s Kate (book shelf)
Pumpkin pictures:
http://ptnoticias.com/pumpkinway/

