FLow3 §

TDD (with FLOW3)

Karsten Dambekalns <karsten@typo3.org>

Inspiring people to

share

FLow3 §

What?
Why?
How?

Inspiring people to

code later

FLow3 §

TDD 1s about Tests

¥ Write tests for all your code
= New features come with a test

= Bugfixes come with a test

Inspiring people to

share

FLow3 §

TDD 1s about Tests

¥ Write tests for all your code
= New features come with a test
= Bugfixes come with a test
¢ Write tests before your code
= Adding a feature means adding a test first

= Fixing a bug means writing a test first

Inspiring people to

share

FLow3 §

The TDD Mantra

Inspiring people to

share

FLow3 §

The TDD Mantra

Test fails

b

Inspiring people to

share

FLow3 §

The TDD Mantra

Inspiring people to

share

FLow3 §

The TDD Mantra

m

Inspiring people to

share

FLow3 §

The TDD Mantra

m

Inspiring people to

share

FLow3 §

Unit tests

¢ Unit tests are small programs that test your code
¢ They check

= the result of methods against expected values

= whether methods are (not) called as expected
¢ Atest should

= be well-named

= check only one assertion

Inspiring people to

share

FLow3 §

Good tests

¢ Should be...
= automated
= self-contained
= repeatable
= thorough
= small

= talk about the domain

Inspiring people to

share

FLow3 §

Running unit tests

¢ Unit tests are usually run with a test runner
¢ The xUnit family is most widespread
¢ PHPUNit does the job for PHP
¢ FLOW3 has a Testing package
= acts as test runner
= provides helpful environment

= web-based and (LI tool

Inspiring people to

share

"

"

"

"

& M N (V23

co

kmac:Public karsten$ sudo php index.php testing cli run --package-key=PHP6 —-output-directory="pwd: ——coveruge——directory:‘pwd‘l

Inspiring people to

share

EX

tput-directory="pwd"® --coverage--directory:‘pwd‘l

TYPO3 Testrunner

" PHP6 v] Test case class name:
W run Code Coverage Analysis

'

(Run

\

F3::PHP6::TextlteratorTest
Tests: 22 total, 0 skipped, 0 incomplete, O falled, 0 errors

F3::PHP6::FunctionsTest
Tests: 17 total, 0 skipped, 0 incomplete, O falled, 0 errors

SUCCESS

33 tests, O failures, O errors. See code coverage report...

Inspiring people to

share

tput-directory="pwd® --coverage--directory="pwd" I
TYP03 Testrunner

FLow3

' PHP6

+| Test case class name:

7

W run Code Coverage Analysis

(Run)

F3::PHP6::TextlteratorTest

Tests @ O O F3::PHPG6::TextlteratorTest

F3::}

Tests F3::PHP6::TextlteratorTest
SU‘ Current directory: /Users/karsten/Sites/TYPO3vS/Packages/PHP6/Classes
19 tes| Legend: Low: 0% to35% Medium: 35% to 70% High: 70% to 100%

Total I | 100.00% 3/3 84.21%

32/38 | | 8

F3 PHP6 Functions.php |] 100.00% 1/1 [| 90.00% 9/10 |]
F3 PHP6 TextIterator.php | | 100.00% 1/1 I | 78.26% 18/23 | | 9
F3 PHP6 TextIteratorElement.php | | 100.00% 171 | | 100.00% Susy |] 10

Generated by PHPUnit @packaqge_version@ and Xdebug 2.0.3 at Mon Oct 6 16:18:33 CEST 2008.

Inspiring people to

share

FFFFF |\

lTests aren't
the goal

FLows €

FLow3 §

They make you feel good

FLow3 §

They make you feel good

¢ What the tests do for you is the key
V¢ The tests make you

= focus on your task

= code exactly what you need

= think from the outside

= a better programmer®

Inspiring people to

share

FLow3 §

They make you feel good

¢ What the tests do for you is the key
V¢ The tests make you

= focus on your task

= code exactly what you need

= think from the outside

= a better programmer®

* decoupling helps with testing,
decoupled code is easier to maintain,
easier is better - g.e.d.

Inspiring people to

share

FLow3 §

Use TDD to...

V' Feel more comfortable
= Build confidence in your code
= Reduce fear of change
¢ Have a safety net
= Regression testing built in
= Helps with refactoring

¢ Provide (good) documentation through (good) tests

Inspiring people to

share

FLow3 §

D for Development

Inspiring people to

FLow3 §

D for Design

Inspiring people to

share

FLow3 §

D for Design

¢ Writing tests first is likely to improve your code
= You use the API before you code
= You make the API fit your needs

¢ Unit testing ensures decoupling

¢ You only code what is really needed

¢ Constant refactoring keeps code clean

Inspiring people to

share

FLow3 §

TDD in Practice

¥ Write down your next goal

¢ Now write a test to check this

¢ The test will fail, it might even break with a fatal error
¢ Now write the code you need to write

¢ If you test again, the test should now pass

¢ Iterate - until it passes or all features are in

Inspiring people to

share

FFFFF |\

No FLOW3?

Inspiring people to

FLow3 §

Dependencies

¢ (lasses explicitly refer to other classes
¢ But you want to test a small unit
¥ You don't want to test
= The Steamer
= The Grinder
V' You want to test

= if the Barista uses the right amount of coffee and the
requested milk when asked for coffee

Inspiring people to

share

FLow3 §

Dependencies - bad

class Barista {

public function make($drink) {
if (4drink === 'Tea') {
throw new F3::Demo::Exception::NotAvailable(
'We don\'t serve no tea, Sir', 1223385110):

}

ScoffeeGrinder = new Grinder();
Ssteamer = new Steamer();

Scoffee = ScoffeeGrinder->grind(9, Grinder::FINE);
Smilk = Ssteamer->getSteamedMilk(Steamer::FAT_LOW);

Inspiring people to

share

FLow3 §

Dependency Injection

"

"

"

"

"

This methodology is referred to as the "Hollywood Principle":
"Don't call us, we'll call you"

A class doesn't ask for the instance of another class but gets it
Injected

Enforces loose coupling and high cohesion
Allows you to mock collaborators

Makes you a better programmer

Inspiring people to

share

FLow3 §

Dependencies - good

class Barista {
protected $grinder;

protected $steamer;

public function __ construct(F3::Demo: :Grinder $grinder, F3::Demo::Steamer Ssteamer) {
Sthis->grinder = $grinder;
Sthis->steamer = Ssteamer;

Inspiring people to

share

FLow3 §

Dependencies - good

public function make($drink) {
if (4drink === 'Tea') {
throw new F3::Demo::Exception::NotAvailable(
'We don\'t serve no tea, Sir', 1223385110):

}

Scoffee = $this->grinder->grind(9, Grinder::FINE);
Smilk = Sthis->steamer->getSteamedMilk(Steamer: :FAT _LOW);

Inspiring people to

share

FLow3 §

Without Dependency
Injection you cannot
do unit testing

Inspiring people to

FLow3 §

S0, what to

Inspiring people to

FLow3 §

Mocks & Stubs

"

"

"

"

"

Sometimes you need to test interaction with external systems,
like milk steamers

A test should be small, encapsulated, stand-alone

Mock objects allow you to use fake objects
Stubs can be used to return hard-coded results

Using them is actually (somewhat) easy with PHPUnit

Inspiring people to

share

FLow3 §

FLOW3 + TDD = FUN

¢ FLOW3 makes Dependency Injection easy
¢ With Dependency Injection you can do proper unit testing
¢ Proper unit tests

= help produce reliable code

= make refactoring possible

= make you feel better

¢ All this means more fun while coding

Inspiring people to

share

FLow3 §

Questions!

Inspiring people to

share

FLow3 §

Literature

roowe B Test-Driven Development By Example
Kent Beck, Addison-lWesley

£2d
Forins

_<i Continuous Integration - Improving Software Quality and
Reducing Risk

Paul M. Duvall, Addison-Wesley

wwwww

'
TR llson Wy Fimatino S

wnns o] XUnit Test Patterns - Refactoring Test Code
Gerard Meszaros, Addison-Wesley

Inspiring people to

share

FLow3 §

Liks

Sl hittp -/ /flow3 typo3.o rg/

B PHPUNIt
B http://www.phpunit.de/

B 10D in Wikipedia
http://en.wikipedia.org/wiki/Test-driven_development

Inspiring people to

share

